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A B S T R A C T   

Sea turtle scute abnormalities are observed in higher proportion in hatchlings compared to adults, suggesting 
that hatchlings with a non-modal scute pattern (NMSP) have a lower chance of surviving to adulthood. In this 
study, we collected 732 newly emerged hatchlings from Redang Island, Malaysia, and compared their scute 
classification, size, and mass to fitness correlates (self-righting ability, crawling speed, and swimming speed). We 
investigated the proportion of hatchlings from each nest with NMSP to determine if there was a correlation with 
incubation duration or clutch relocation. We found relocated clutches at Chagar Hutang Turtle Sanctuary had a 
significantly shorter incubation duration with a higher proportion of NMSP compared to in situ clutches. 
Hatchlings’ mass were significantly heavier from in situ clutches compared to relocated clutches, although there 
were no significant differences of hatchling speed based on scute classification or clutch type. The difference of 
hatchling mass between in situ and relocated clutches could affect predation and mortality rates on recently 
emerged hatchlings. These findings have important conservation implications, suggesting that relocation should 
only be implemented on clutches with a high potential to be disrupted or with a low chance of survival if left in 
situ. Our findings highlight the need for a standard procedure when clutch relocation is used as a conservation 
strategy. Relocation should replicate natural nest dimensions by duplicating both nest width and depth, and 
clutches should be relocated to similar shade conditions as the natural nest.   

1. Introduction 

There are seven extant species of marine turtles, most of which are 
classified as Endangered or Critically Endangered by the International 
Union for the Conservation of Nature (IUCN, 2020). Many marine turtle 
populations have experienced a decline in the past several decades due 
to coastal development, habitat loss, plastic entanglement and ingestion, 
and poaching (Hamann et al., 2007; Lutcavage et al., 1997; Wallace 
et al., 2011). In addition to these pressures, anthropogenic climate 
change poses a major threat to marine turtles (Root and Schneider, 
2002). Sea turtle clutch relocation is a conservation strategy currently 
used by many hatcheries to protect eggs in areas where natural hatchling 
success is low due to human poaching, tidal inundation and erosion 
threats, or high predation (García et al., 2003; Türkozan and Yılmaz 
2007). There is some evidence that clutch relocation can increase 
hatchling success (Dutton et al., 2005; García et al., 2003), but there are 

also concerns about unintended consequences, including altering the 
gene pool (Mrosovsky, 2006), decreasing fitness of hatchlings, 
decreasing hatching success (Limpus et al., 1979; Talbert et al., 2008; 
Ware and Fuentes, 2018), increasing the frequency of scute abnormal-
ities in hatchlings (Mast and Carr, 1989; Türkozan and Yılmaz, 2007), 
and disrupting natural sex-ratios (Pintus et al., 2009). 

A single nesting beach can have varying microenvironments (i.e., 
moisture and temperature) around the incubating eggs (Cagle et al., 
1993). Thus, relocating clutches can affect the incubation conditions of 
the eggs, which can in turn influence hatching success, size, and sex 
(McGehee, 1990; Maulany et al., 2012; Stewart et al., 2019). Temper-
ature affects several aspects of ectotherm development during incuba-
tion (Howard et al., 2014), including the incubation duration 
(Mrosovsky and Yntema, 1980), growth rate (Gillooly et al., 2001), lo-
comotor performance (Maulany et al., 2012), size of hatchlings (Du and 
Ji, 2003; Sibly and Atkinson, 1994), and sex determination (Mrosovsky 
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and Yntema, 1980). While the sex of mammals is determined by sex 
chromosomes at the time of fertilization, the sex of marine turtles is 
determined by the nest temperature during the middle third of embry-
onic development, known as temperature-dependent sex determination 
(Mrosovsky and Yntema, 1980). Eggs incubated at ~29 ◦C produce a 
50:50 sex ratio, called the pivotal temperature (PT), and temperatures 
above the PT produce predominantly females and vice versa (Mrosov-
sky, 1994). For all seven species of marine turtles, there is a thermal 
range of 25–33 ◦C in which egg incubation is successful (Howard et al., 
2014; Spotila and Standora, 1985), and temperatures towards the higher 
threshold (prolonged exposure above 33 ◦C) can result in morphological 
abnormalities and increased hatchling mortality (Hawkes et al., 2007; 
Hays et al., 2003; Laloë et al., 2016; Packard et al., 1977). 

Rising temperatures due to anthropogenic climate change could have 
negative impacts on all life stages of sea turtles. Marine turtle develop-
ment could be adversely affected by increased sand temperature at 
nesting beaches, as well as other climate change consequences which 
could lead to nest inundation including increased frequency of storms 
and sea-level rise (Booth et al., 2004, 2013; Booth and Astill, 2001; 
Booth and Evans, 2011; Fuentes et al., 2011; Glen and Mrosovsky, 2004; 
Hawkes et al., 2007; Hays et al., 2003; Lyons et al., 2020). Therefore, 
marine turtle clutch relocation might be increasingly used as a conser-
vation strategy to cope with these consequences of climate change. 
Many managed marine turtle nesting beaches use hatcheries that follow 
a standard procedure regarding clutch relocation techniques, such as 
ensuring the new egg chamber is the same depth as the natural nest, and 
choosing a new nest site with the same distance to vegetation and sea 
(Eckert et al., 1999). With anthropogenic climate change having 
increasing threats on incubating clutches, it is important to understand 
the possible consequences of clutch relocation on hatchling fitness and 
survival if it is to be used by hatcheries as a conservation technique. 

There are difficulties in directly measuring fitness and survival in 
marine turtles throughout their various life stages (Booth et al., 2004). 
Due to the difficulty of tagging and tracking hatchlings, assessing the 
survivability after emergence is problematic. As a consequence, corre-
lates of fitness in hatchling turtles are often used as a proxy, due to the 
ease of access of hatchlings on nesting beaches (Booth et al., 2004; 
Freedberg et al., 2004; Ischer et al., 2009; Sim et al., 2014a). Some of 
these correlates of fitness include body size, self-righting ability, 
crawling speed, and swimming speed (Booth et al., 2004; Freedberg 
et al., 2004; Ischer et al., 2009; Sim et al., 2014a). Hatchlings with a 
larger body size could have increased fitness due to increased swimming 
and crawling speed (Burgess et al., 2006; Le Gouvello et al., 2020), 
which would make them less likely to encounter predation (Martins 
et al., 2020). Hatchlings often experience high rates of predation 
following nest emergence (Pilcher et al., 2000; Wilson et al., 2019), thus 
increased locomotor ability could improve their chances of survival. 
Conversely, smaller hatchlings with shorter incubation times tend to 
have a larger yolk reserve (Booth et al., 2004) and therefore have the 
potential to survive longer if food is scarce. 

The scute pattern on a hatchling’s carapace is a physical attribute 
that is a proposed indicator of fitness (Sim et al., 2014a, 2014b). The 
modal scute pattern (MSP) for green turtles (Chelonia mydas) is five 
vertebral scutes and four pairs of costal scutes which are flanked by 
eleven or twelve pairs of marginal scutes (Özdemir and Türkozan, 
2006). The variation in marginal scutes is more common in both adult 
and hatchling green turtles and typically has little effect on body shape 
and is considered far less likely to affect fitness of hatchlings compared 
to the variation in costal and vertebral scutes (Ergene et al., 2011; 
Margaritoulis and Chiras, 2011; Türkozan et al., 2001). The proportion 
of hatchlings with non-modal scute patterns (NMSP) is more common 
than the proportion of adults with scute abnormalities (Limpus, 1971; 
Mast and Carr, 1989; Türkozan et al., 2001), suggesting that fewer 
turtles with NMSP survive to adulthood (Mast and Carr, 1989). Abnor-
malities in scute pattern are likely caused by a variety of factors, 
including genetics (Velo-Antón et al., 2011), environmental parameters 

during incubation (Hewavisenthi and Parmenter, 2002), and egg 
handling during clutch relocation (Sönmez et al., 2011; Türkozan and 
Yılmaz, 2007). 

Since hatchlings’ morphology can indicate viability (Booth et al., 
2004; Janzen et al., 2000), we assessed if scute patterns and morphology 
(size and mass) were affected by clutch relocation, and if this, in turn, 
influenced hatchling locomotor ability at the Chagar Hutang Turtle 
Sanctuary in Malaysia. We hypothesized that clutch relocation would 
affect the quality, morphology, and fitness of hatchlings. 

2. Material and methods 

2.1. Study site 

This study was conducted on the northernmost beach of Redang Is-
land (5.812787, 103.008217), located about 23 km off the east coast of 
Peninsular Malaysia in the South China Sea (Fig. 1). Chagar Hutang 
Turtle Reserve is a 350 m long beach, only accessible via boat due to 
surrounding tropical rainforest and hills. Green turtles are the primary 
species that nest at Chagar Hutang, with an estimated average of 502 
clutches laid per year, with the occasional hawksbill nesting, with an 
estimated average of 9 clutches laid per year (Chan, 2010). Nesting 
activities have been monitored regularly at Chagar Hutang since 1993 
(Chan, 2010). The Sea Turtle Research Unit (SEATRU) volunteer pro-
gram was introduced at Chagar Hutang in 1998, which conducts yearly 
monitoring, tagging, and in situ egg incubation research from April to 
September. In 2005, Chagar Hutang was declared as a turtle sanctuary 
through the Department of Fisheries, and it was closed to the public and 
thus protected against poaching. 

At Chagar Hutang, eggs are relocated as a conservation strategy if the 
risk of predation or nest inundation are high. In general, clutches are 
relocated to open areas, and the depth of the relocated clutches are kept 
the same as the natural nest. This process is completed within 2 h of 
oviposition. Volunteers and rangers are responsible for nest monitoring; 
therefore, the decision to relocate and the method of relocation vary. 
There are certain zones of the beach that have higher water inundation 
risk, ant predation, and large rocks, thus all clutches laid in these zones 
are relocated. In addition, clutches laid near the high tide line were 
relocated to decrease risk of tidal inundation. 

2.2. Nest monitoring and hatchling collection 

From August 1–19th, 2019, newly emerged hatchlings from 37 green 
turtle (Chelonia mydas) nests were collected. Sampled clutches were 
incubated both in the shade and sun, in situ and exsitu(relocated), and at 
different locations along the beach. The depth of relocated clutches was 
kept the same as their natural nest, and the relocation procedure was 
completed within 2 h of oviposition. After 45 days of incubation, a 
plastic mesh corral was placed above the nest each night at dusk to 
prevent emerging hatchlings from escaping to the sea. Nests were 
checked hourly until dawn so the time of emergence could be recorded, 
and to allow for hatchlings’ locomotor performance to be measured soon 
after emergence. Corral placement was repeated on consecutive nights 
until hatchling emergence occurred. 

2.3. Locomotor performance and morphology of hatchlings 

After emergence, the number of vertebral and costal scutes of all 
hatchlings was recorded. Twenty hatchlings were collected from each 
nest, 10 MSP and 10 NMSP, but if there were less than 10 NMSP 
hatchlings, the balance was made up of MSP hatchlings. We did not 
count the number of marginal scutes, as variations in the number of 
marginal scutes have been found to have little effect on hatchlings (Sim 
et al., 2014a). Hatchlings selected from each nest were labeled on their 
plastron with a marking pen. Within 2 h of hatchling emergence, the 
self-righting locomotor performance test was started. Each hatchling 
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was placed upside down on its carapace in a flat-bottomed plastic tub 
and the time it took it to self-right was measured. If the hatchling failed 
to self-right within 30 s it was placed upright for 10 s before being trialed 
again. Between each trial, the hatchling was given 10 s of rest, for a total 
of three self-righting tests. Immediately following the self-righting 
experiment, the crawling test was conducted. 

For the crawling and swimming experiments, a 2.9 m length of black 
plastic guttering was used. The raceway was placed on a sea-ward facing 
slope, which we lined with fresh sand each night. A light was attached to 
the seaward-facing end of the gutter, and hatchlings were released at the 
opposite end. Crawl speed was calculated as the time it took for hatch-
lings to crawl the 2.9 m, and the trial was ended if the time exceeded 2 
min. Swimming speed was measured in the same method as above, but 
the raceway was moved to a flat surface, and fresh seawater was used to 
fill the gutter each night. 

Immediately following the swimming tests, the hatchlings’ carapace 
length and width was measured at the widest point using a 150 mm 
digital caliper (±0.1 mm). A hatchling size index (carapace length ×
carapace width) was calculated for each hatchling. Hatchlings were 
weighed using an electronic balance (Electronic Compact Scale, SF- 
400C, 500 ± 0.01 g) and then released to crawl to the sea. 

All experimental procedures were approved by the University of 
Malaysia Terengganu animals ethics committee (approval no. UMT/ 
RMIC/2-2/1/23). 

2.4. Statistical analyses 

Three different statistical approaches were used to examine the effect 
of clutch relocation on incubation duration and scute pattern of hatch-
lings. First, after testing for normality and equal variance with Shapiro- 
Wilk and Levene tests, a t-test was conducted to compare incubation 
duration between relocated and in situ clutches. Next, to assess the 
relationship between incubation duration and proportion of NMSP 
hatchlings, a Kendall rank correlation coefficient was used. A 

comparison of the proportion of hatchlings with NMSP between in situ 
and relocated clutches was conducted with a Mann-Whitney U test. 

Factorial Analysis of Variance (ANOVA) tests were used to assess if 
there were differences in size (mass and size index) between NMSP and 
MSP hatchlings and between hatchlings from relocated and in situ 
clutches, with clutch ID as the random factor. A Kendall rank correlation 
coefficient was used to determine the relationship between incubation 
duration and size and mass of the hatchlings. Factorial ANOVAs were 
also used to evaluate the crawling, swimming, and self-righting speeds 
between NMSP and MSP hatchlings and hatchlings from relocated and in 
situ clutches. For the swimming and crawling speeds, we deemed the 
speed trial a failure if the hatchling took longer than 2 min to finish, and 
we excluded them from the analysis. Thus, we had swim speeds from 
294 relocated hatchlings and 401 in situ hatchlings, and crawl speed 
from 306 relocated hatchlings and 404 in situ hatchlings. Self-righting 
attempts were deemed a failed attempt if they took longer than 30 s. 

In order to assess the relationship between size and locomotor per-
formance, we first checked for normality and equal variance. If the data 
was normal and equal variance was achieved, we assessed the correla-
tion with a Pearson’s product correlation. If the data was not normal or 
there was not equal variance, a Kendall rank coefficient was calculated. 
All statistical analyses were performed using RStudio V1.2.5001 (R 
Development Core Team, 2019), and statistical significance was 
assumed as P < 0.05. 

3. Results 

A total of 2133 newly emerged hatchlings from 37 nests were 
examined during the course of this study (Table 1). A Mann-Whitney U 
test showed that relocated clutches had a significantly higher proportion 
of NMSP hatchlings (M = 25.38, SD = 21.22) compared to in situ 
clutches (M = 8.55, SD = 8.73), W = 79.5, P = 0.009 (Fig. 2). 

A Student’s T-Test showed that relocated clutches had significantly 
shorter incubation durations (M = 49.0, SD = 1.93), compared to in situ 

Fig. 1. Chagar Hutang Turtle Sanctuary located on the northern tip of Redang Island, approximately 23 km east of Peninsular Malaysia.  

L.K. Tanabe et al.                                                                                                                                                                                                                               



Ocean and Coastal Management 207 (2021) 105591

4

clutches (M = 52.05, SD = 2.87), t35 = 3.86, P = 0.0005 (Fig. 3). A 
Kendall’s tau correlation was run to determine the relationship between 
incubation duration and proportion of NMSP hatchlings within the 37 
nests. There was a strong, negative correlation between incubation 
duration and proportion of NMSP hatchlings, which was statistically 
significant (τb = − 0.283, P = 0.018) (Fig. 3). This means that nests with 
shorter incubation durations (presumed due to higher temperatures) 
had a higher prevalence of hatchlings with NMSP. 

A Kendall’s tau correlation was run to determine the relationship 
between incubation duration and hatchling size. There was a negative 

correlation between incubation duration and size indices of hatchlings 
(τb = 0.324, P < 0.0001). Similarly, there was a negative correlation 
between incubation duration and mass of hatchlings (τb = 0.213, P <
0.0001). Nests with shorter incubation durations (presumed due to 
higher temperatures) had lighter and smaller hatchlings. 

Next, morphological differences in mass and size indices were 
assessed by scute classification and clutch type. A factorial ANOVA was 
used to test the interaction effects of clutch type and scute classification 
on the hatchlings’ mass. Clutch type included two levels (in situ, relo-
cated), scute mutation consisted of two levels (MSP, NMSP), and the 
clutch ID was added as a random factor. There was no significant 
interaction between scute classification and clutch type on the hatch-
lings’ mass, F1,724 = 0.278, P = 0.598 (Fig. 4). There was also no sig-
nificant difference between MSP and NMSP hatchlings’ mass, F1,724 =

3.828, P = 0.051. Although we did find a significant difference between 
relocated (M = 19.41, SD = 1.59), and in situ hatchlings’ mass (M =
19.87, SD = 1.59), F1,724 = 20.708, P < 0.0001. To summarize, hatch-
lings from relocated clutches were lighter compared to hatchlings from 
in situ clutches, but there was no difference in mass between hatchlings 
with and without MSP scute patterns. 

A factorial ANOVA was also conducted to test the interaction effects 
of clutch relocation and scute classification on hatchling size, with 
clutch ID added as a random factor. There was no significant interaction 
between scute classification and clutch type on the size index of 
hatchlings, F1,724 = 0.058, P = 0.810 (Fig. 4). The main effect for relo-
cation yielded an F ratio of F1,724 = 1.853, P = 0.174, indicating no 
significant difference in size between hatchlings from relocated (M =
1514, SD = 104.87), and in situ clutches (M = 1592, SD = 111.87). The 
main effect for scute classification produced an F ratio of F1,724 =

Table 1 
Descriptive statistics comparison between relocated and in situ green turtle 
clutches. Incubation duration was defined as the number of days before the eggs 
were laid and the day of first emergence. Hatching success was defined as the 
proportion of the entire clutch that hatched to produce live hatchlings. Per-
centage of hatchlings demonstrating non-modal scute pattern (NMSP) was 
calculated. Distance from vegetation was measured in meters from the nest to 
the closest major region of vegetation.   

Relocated In situ 

Nest Count 15 22 
Hatchling Count 760 1313 
Incubation Duration ±SD 49 ± 1.93 52 ± 2.87 
Hatching Success ±SD 71.39 ± 16.33 85.96 ± 9.61 
% NMSP ±SD 25.38 ± 21.22 8.55 ± 8.73 
Distance from Vegetation (m) ± SD 6.17 ± 2.84 5.11 ± 3.32  

Fig. 2. Comparison of the percent of hatchlings with non-modal scute patterns 
(NMSP) between relocated and in situ nests. Relocated clutches had a signifi-
cantly higher proportion of mutated hatchlings compared to in situ nests (P =
0.009). Mean values are represented by an X, the center line of each boxplot 
denotes the median, the boxes contain the inner quartiles of the sampled values, 
the whiskers extend to the most extreme data point which is within 1.5 times 
above the 75th percentile or below the 25th percentile, and the black dots 
denote outliers that are >1.5 times the interquartile range above the 75th 
percentile and below the 25th percentile. 

Fig. 3. The relationship between incubation duration (days) and percent of 
hatchlings with non-modal scute patterns (NMSP) between in situ (n = 15) and 
relocated (n = 22) nests. There was a negative correlation between incubation 
duration and proportion of NMSP hatchlings (P = 0.018). Relocated clutches 
had significantly shorter incubation durations compared to in situ nests (P 
= 0.0005). 
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11.133, P = 0.0009, indicating a significant difference between MSP (M 
= 1567, SD = 103.96) and NMSP hatchlings’ size indices (M = 1536, SD 
= 125.91). Thus, hatchlings with NMSP were smaller than those with 
MSP, but there was no difference in size between hatchlings from relo-
cated clutches compared to hatchlings from in situ clutches. 

Next, the locomotor performance of 734 hatchlings from 37 nests 
was evaluated using swimming and crawling trials. We assessed how 
swimming and crawling speed were influenced by clutch type and scute 
classification. Clutch type included two levels (in situ, relocated) and 
scute mutation consisted of two levels (MSP, NMSP), and the clutch ID 
was added as a random factor. First, the data was filtered to only 
compare hatchlings that completed crawling the length of the raceway 
in <2 min, as time trials exceeding 2 min were considered failed 
attempts. 

A factorial ANOVA was used to test the interaction effects of clutch 
type and scute classification on swimming speed. There was no signifi-
cant interaction between scute classification and relocation on the crawl 
speed of the hatchlings, F1,687 = 1.341, P = 0.247 (Fig. 4). There was also 
no significant difference between MSP and NMSP hatchlings’ swimming 
speed, F1,687 = 0.033, P = 0.856. We also did not find a significant 
difference of swimming speed between hatchlings from relocated (M =
0.155, SD = 0.062), and in situ clutches (M = 0.186, SD = 0.061), F1,687 
= 2.363, P = 0.125. 

We also conducted a factorial ANOVA to test the interaction effects of 
clutch type and scute classification on crawl speed. There was no sig-
nificant interaction between scute classification and clutch type on the 
crawl speed of the hatchlings, F1,702 = 0.975, P = 0.324. There was also 
no significant difference between MSP and NMSP hatchlings’ crawl 
speed, F1,702 = 1.469, P = 0.246. We also did not find a significant 
difference of crawling speed between hatchlings from relocated (M =
0.105, SD = 0.036), and in situ clutches (M = 0.135, SD = 0.038), F1,702 
= 0.572, P = 0.450 (Fig. 4). 

Next, the relationship between the size of hatchlings (size index and 
mass) and locomotor performance (crawl and swim speed) was assessed. 
A significant but weak correlation was detected between size index and 
crawling speed r562 = 0.16, P = 0.0001. A Kendall rank correlation 

coefficient was used to find a weak but significant correlation between 
mass and crawling speed τb562 = 0.09, P = 0.001, size index and swim 
speed τb562 = 0.066, P = 0.019, and mass and swim speed τb562 = 0.072, 
P = 0.011. Therefore, larger and heavier hatchlings have slightly faster 
swimming and crawling speeds. 

Additionally, the average self-righting time was compared by clutch 
type and scute classification using a factorial ANOVA, and hatchlings 
with 3 failed self-righting attempts were omitted. Clutch type included 
two levels (in situ, relocated), scute classification consisted of two levels 
(MSP, NMSP), and the clutch ID was added as a random factor. There 
was no significant interaction between scute classification and clutch 
type on the self-righting of the hatchlings, F1,644 = 0.013, P = 0.909. 
There was also no significant difference between MSP and NMSP 
hatchlings’ self-righting speed, F1,644 = 1.980, P = 0.160. We also did 
not find a significant difference between hatchlings from relocated (M =
3.027, SD = 3.062), and in situ clutches self-righting speed (M = 2.514, 
SD = 2.400), F1,644 = 0.458, P = 0.499. We also compared the propor-
tion of hatchlings with failed self-righting attempts between clutch type 
and scute classification. Failed self-righting attempts were defined as 
taking longer than 30 s, and each hatchling was given three attempts to 
self-right. We found that NMSP hatchlings from relocated clutches had 
the highest proportion (23%) of failed self-righting attempts (Fig. 5). 
Interestingly, MSP hatchlings from relocated clutches had a lower pro-
portion of hatchlings with failed attempts compared to hatchlings from 
in situ clutches. Despite a lower proportion of failed attempts, 3.6% of all 
MSP hatchlings from relocated clutches failed at self-righting in all three 
of their self-righting attempts. 

4. Discussion 

Clutch relocation is used as a conservation strategy to protect turtle 
populations around the world, but we found that the turtles produced 
from these nests could be smaller, less fit, and have a higher proportion 
of hatchlings with NMSP compared to clutches left in situ. The relocated 
green turtle clutches at Chagar Hutang were found to have significantly 
shorter incubation duration compared to in situ clutches. Incubation 

Fig. 4. Box plot showing the effects of clutch type and scute pattern (modal scute pattern in green and non-modal scute pattern in blue) on morphology and fitness of 
hatchling green turtles. Clutch type is defined as relocated or in situ clutches. Scute pattern is defined as modal scute pattern (MSP) or non-modal scute pattern 
(NMSP). Morphology was assessed through measuring mass (g) and size index (carapace length (cm) x carapace width (cm) measurements) of 320 hatchlings from 
relocated clutches and 413 hatchlings from in situ clutches. Fitness was assessed through swim and crawling speed trials and the time was cut off at 2 min, thus this 
analysis includes swim speeds from 294 relocated hatchlings and 401 in situ hatchlings and crawl speed from 306 relocated hatchlings and 404 in situ hatchlings. 
Mean values are represented by an X, the center line of each boxplot denotes the median, the boxes contain the inner quartiles of the sampled values, the whiskers 
extend to the most extreme data point which is within 1.5 times above the 75th percentile or below the 25th percentile, and the black dots denote outliers that are 
>1.5 times the interquartile range above the 75th percentile and below the 25th percentile. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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duration has a direct relationship with incubation temperature of the 
nest, with increased temperatures having shorter incubation durations. 
Higher temperatures speed up physiological processes during incuba-
tion, including growth and development (Schmidt-Nielsen, 1997). Thus, 
it is possible that relocated clutches were warmer due to either shallower 
nest depths or relocation to open areas which receive more direct sun. 
Similar results were found in a study comparing relocated and in situ 
loggerhead clutches, where relocated clutches had a shorter incubation 
duration and warmer temperatures compared to in situ clutches 
(DeGregorio and Williard, 2011). 

We found that incubation duration was correlated with hatchling 
size, mass, and even the proportion of hatchlings with NMSP. Nests with 
longer incubation durations (presumed lower temperatures) produced 
hatchlings with larger sizes and masses. Researchers have speculated 
that larger hatchlings may have reduced predation pressure in the 
neritic zone (Hirth, 1980). Further, MSP hatchlings were significantly 
larger (size index) compared to NMSP hatchlings. In addition, hatchlings 
from relocated clutches had a larger proportion of hatchlings with 
NMSP. NMSP may reflect underlying internal abnormalities that are the 
ultimate cause of lower hatchling locomotor performance (Mast and 
Carr, 1989). 

Hydric conditions have been shown to affect mass (Packard, 1991), 
and temperature determines sex and can affect post-hatchling growth 
rate. Both of these nest environment factors can influence hatchling 
morphology and fitness, and thus play a crucial role in hatchling sur-
vival. Hatchling size can have an impact on survivorship since larger 
animals might have less predation pressure due to its superior locomotor 
abilities as well as being too large for some predators (Gyuris, 2000; 
Limpus, 1973). In addition, a negative correlation between hatchling 
size and nest temperature has been recorded for sea turtles (Reece et al., 
2002). It is thought that with lower temperatures and longer incubation 
durations, more yolk is converted to hatchling material (Ischer et al., 
2009). 

Understanding differences in temperature between relocated versus 
in situ clutches has significant conservation implications, as relocation to 
warmer sand could be lead to all female production. The thermal regime 
of sand can differ on a single beach based on the microenvironment, so 
the beach zone that clutches are relocated to can influence hatchling 
outcomes. This highlights the need for a standard procedure for clutch 
relocation. For example, many hatcheries keep distance from vegetation 
and nest depth comparable to the natural nests, but the artificial nest 
dimensions can be overlooked. By failing to recreate the natural nest 
shape, eggs might be closer to the surface, which can cause an increased 
temperature regime for these incubating hatchlings, though to test this 
hypothesis it would be necessary to deploy temperature loggers in both 

in situ and relocated clutches. Additionally, the location of clutch relo-
cation could influence the temperature regime of the nests. At Chagar 
Hutang, many of the clutches are relocated to open areas of the beach 
that may receive more sun exposure compared to in situ clutches that are 
laid near vegetation or in the shade (Fig. 6). These higher temperatures 
can lead to a higher proportion of females (Jensen et al., 2018), 
morphological abnormalities (Du and Ji, 2003), decreased fitness (Booth 
et al., 2004), and mortality (Matsuzawa et al., 2002). 

It is important to note that the goal of establishing a standard pro-
cedure of clutch relocation is not to standardize the exact size, shape, 
and location of every nest, but to replicate the same dimension and 
microenvironment of the nest from which the clutch came from. 
Furthermore, we found that in addition to relocation causing shorter 
incubation durations, hatchlings from relocated clutches had a signifi-
cantly higher proportion of hatchlings with NMSP compared to in situ 
clutches. A study conducted on Kemp’s ridley turtles (Lepidochelys 
kempi) compared egg-handling methods during clutch relocation and 
found that the least handled eggs produced turtles with the lowest levels 
of variability in scute patterns, and the roughly handled eggs produced 
the highest levels of scute pattern variability (Mast and Carr, 1989). In 
addition, a 1994 study found that the scute deviation rate was higher for 
relocated hatchlings compared to in situ hatchlings (Suganuma et al., 
1994). The exact implications of scute variation for sea turtles are un-
clear, although since there are fewer adults with NMSP, it is believed 
that hatchlings with NMSP have reduced survivorship (Mast and Carr, 
1989). Thus, clutch relocation and artificial incubation should be only 
used in “doomed nests”, where natural survival would otherwise be very 
low. In order to separate the effects of egg handling from the placement 
(and thermal regime) of relocated clutches, future studies could include 
relocating eggs back into the natural nest and compare hatchling 
morphology and fitness. 

5. Conclusion 

Our results suggest that clutch relocation at Chagar Hutang Turtle 
Sancturary can result in smaller hatchlings with a higher proportion of 
NMSP. Although there are potential benefits of relocation on clutches for 
nests that would otherwise have a low chance of survival if left in situ, 
there do appear to be some adverse consequences of clutch relocation on 
hatchlings. Relocated clutches had a lower hatching rate than clutches 

Fig. 5. Comparison of clutch type and scute classification on the proportion of 
hatchlings with failed self-righting attempts, with each hatchling allowed three 
attempts. If time was >30 s, it was deemed a failed attempt. Nest type is defined 
as relocated or in situ nests. Scute pattern was defined as modal scute pattern 
(MSP) or non-modal scute pattern (NMSP). 

Fig. 6. We found relocated clutches had a shorter incubation duration which 
suggests they could have a warmer thermal regime compared to the clutches 
left in situ. These relocated clutches can have hatchlings with morphological 
abnormalities, smaller sizes, and lower fitness. 
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left in situ, but it is important to note that relocation was only imple-
mented on clutches that faced a higher threat of predation or inunda-
tion, so success was likely higher than if they were left in situ. The 
highest mortality rate of turtles is believed to be during the early stages 
of life, between incubation and swimming out to the open ocean after 
emergence (Crouse et al., 1987). With mortality rates of 40–60% within 
the first 2 h in the sea (Pilcher et al., 2000), it is crucial that hatchery 
management strategies work to decrease the likelihood of predation 
during this critical time. If clutch relocation is used, then it is important 
to minimize handling and ensure that the artificial nest dimensions, 
particularly the egg chamber diameter, carefully replicates the natural 
nest from which the clutch came from. If the natural clutch was laid in 
the shade, the relocated clutch should also be placed under the shade, to 
try to reproduce the natural nest conditions. 
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